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Goal: break computational barrier

High-fidelity computational models

+ Validated RANS/LES model: matches experiment to within 5%
- Large scale: 86 million cells; 200,000 time steps

- High simulation costs: 6 weeks; 5000 cores

Barrier

Many query applications

m Uncertainty quantification m Design optimization
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Nonlinear dynamical systems and many-query problems
Full-order model (FOM)

ull-oraer moael d
O oty x(0.) = ), < 0.T], e D

time discretization

r"(x";u)=0, n=1,...N, peD

Many-query problems
Goal: compute Qol g(x"; ), n=1,..., N for pi € Deya) C D

Deval

This is intractable with a large-scale FOM
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Approach: ROM and ROMES

Reduce the FOM dimensionality and
quantify the introduced uncertainty

Reduced-order model (ROM)

m Goal: low-dim dynamical system that accurately represents FOM
m Approach: unsupervised machine learning and projection
+ physics-based approximation
+ can preserve special problem structure
+ high speedups possible
Reduced-order model error surrogate (ROMES)
m Goal: unbiased, low-variance statistical model of the ROM error
m Approach: supervised machine learning (regression)
+ more useful than error bounds (overpredict)
+ quantifies ROM-induced epistemic uncertainty
+ enables rigorous integration with UQ
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Approach: leverage simulation data
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ROM training: solve FOM for i1 € Drom C Deval
m State and residual snapshots
ROM construction

m Unsupervised ML: discover structure in ROM training data
m Projection: reduce FOM dimensionality

ROMES training: solve ROM and FOM for 1 € Dromes € Deval

m ROM error indicators
m ROM Qol error

ROMES construction

m Supervised ML: map ROM error indicators to ROM Qol error
Online: solve ROM + ROMES for remaining points in Deyal
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Approach: leverage simulation data
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ROM training: solve FOM for 1 € Drom C Deval
m State and residual snapshots
ROM construction

m Unsupervised ML: discover structure in ROM training data
m Projection: reduce FOM dimension

ROMES training
ROMES construction
Online: solve ROM + ROMES for remaining points in Deya

Collaborators: M. Barone (Sandia), H. Antil (GMU)
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ROM training

r"(x",p)=0, n=1..,N, p€Drom

1 Collect ‘snapshots’ of the state (and residual)
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ROM construction: unsupervised machine learning

m Principal component analysis (i.e., POD)
m Compute SVD:  [X; X, X3] =

II I\ 1

m Truncate: ® =[u; --- up)
m Repeat for residual to construct ®g

m Clustering
m Construct sampling matrix P from residual data [C. et al., 2013]
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Approach: leverage simulation data
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ROM training: solve FOM for i1 € Drom C Deval

m State and residual snapshots
ROM construction

m Unsupervised ML: discover structure in ROM training data
m Projection: reduce FOM dimension

ROMES training

ROMES construction
Online: solve ROM + ROMES for remaining points in Deya
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How to perform projection with state basis ®7

Full-order model
ODE

time discretization

Full-order model
OAE
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How to perform projection with state basis ®7

m Optimize then discretize? (common)

Full-order model optimal Galerkin ROM
ODE projection ODE

!

time discretization time discretization

Full-order model Galerkin ROM
OAE OAE
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How to perform projection with state basis ®7

m Optimize then discretize? (common)

m Discretize then optimize? (uncommon)

Full-order model
ODE

time discretization

LSPG ROM optimal Full-order model
OAE projection OAE

Comparative analysis: C, Barone, Antil, “Galerkin v

optimal
projection

Galerkin ROM
ODE

!

time discretization

Galerkin ROM
OAE

l

. least-squares

Petrov—Galerkin projection in nonlinear model reduction,” Journal of

Computational Physics, 330:693-734, 2017.
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Galerkin ROM: first optimize

Full-order model
ODE

time discretization

|

Full-order model
OAE

Reducing nonlinear dynamical systems

Galerkin
projection

Galerkin ROM
ODE
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Galerkin ROM
m ODE: Galerkin projection on FOM ODE

1 x(t;p) ¢Xtﬂ 2¢(f(xt/1) %)

dx
d

e OTF(dx, t;p), %(O0;p)=®"x%u), te[0,T], peD

0
0

Theorem (Galerkin ROM: time-continuous optimality)

The Galerkin ROM velocity minimizes the time-continuous FOM residual:

dx
bx, tp) = i — f(®x, t; p)||3.
dt( X, t;p) = arg L v — F(®x, t; )2
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Galerkin: first optimize, then discretize

Full-order model
ODE

time discretization

|

Full-order model
OAE

Reducing nonlinear dynamical systems

Galerkin
projection

Galerkin ROM
ODE

!

time discretization

!

Galerkin ROM
OAE
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Galerkin ROM

m ODE
ax

dt

— =0 f(0%,t;pn), %(0) =T x%p),

dx

+ Continuous velocity 7 is optimal

m OAE

telo, T],

O r"(®X"u) =0, n=1,...N, peD

- Discrete state X" is not generally optimal

Reducing nonlinear dynamical systems
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LSPG ROM: first discretize, then optimize

LSPG ROM Petrov—Galerkin
OAE projection

Reducing nonlinear dynamical systems

Full-order

model
ODE

time discretization

|

Full-order

model
OAE

Galerkin
projection

Galerkin
projection

Galerkin ROM
ODE

!

time discretization
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LSPG ROM

m FOM OAE
r"(x";u)=0, n=1,..N, peD
m LSPG ROM OAE:

%" = arg min ||Ar" (®2;u) |3, n=1,..,N, peD
2€RP

)

W"()?";;L)Tr” (®x";n)=0, n=1,..,N, peD

B V(% p) = ATAL (0% p)
+ Discrete solution is optimal
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How to select weighting matrix A? [c. et al, 2013
%" = arg min ||Ar" (®2; p) ||3
2eRp
m Gappy POD approx of residual r" ~ ¥" = ® (P®g)" Pr"
X" = arg min ||F" (®2) ||3 = X" = arg min || (P®R)T Pr"(®2)]3
zeRpP 2eRP T ——e— —

AGNAT
m Sample mesh: Extract mesh subset needed to compute Pr"

-+ Small problem size: can run on many fewer cores
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CaVity—ﬂOW pr0b|em Collaborator: M. Barone (SNL)

m Unsteady, compressible m Re =6.3 x 10°
Navier-Stokes

m DES turbulence model m 1.2 x 10° degrees of

m M, =0.6 freedom

Reducing nonlinear dynamical systems Kevin Carlberg
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GNAT performance (t < 12.5 sec)

vorticity field pressure field

GNAT
ROM

FOM

+ < 1% error in time-averaged drag
+ Sample mesh: 4.1% nodes, 3.0% cells

+ 229x CPU-hour savings

m FOM: 5 hour x 48 CPU
s GNAT ROM: 32 min x 2 CPU

- Galerkin unstable
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Why is LSPG more accurate than Galerkin? [c. et al. 2017]

Theorem (Local a posteriori bounds: BDF schemes)

If the following conditions hold:

Jdk > 0 such that ||[f(x,-;-) — f(y. - *)|l2 < K||x —
Vx,y € RV

At small enough such that 0 < h := |ag| — |Bo|AL
A BDF scheme is employed for time integration, then

k
1 o 1 =
loxg]l < F||r%(¢XG;u)||2+FZ Jevel 103G

k

1 1 n—¢

I6xgl < 5 _min | Irbyi )t o el 65
=1

m Ox% = x] — ®XL. m 0x] = xI — ®%]
LSPG sequentially minimizes the time-local error bound

Can we use this bound for error estimation?
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Time-global error bound [c. et at, 2017]
Theorem (Global a posteriori bounds: BDF schemes)

If the following conditions hold:

Jdk > 0 such that ||[f(x,-;-) — f(y, - ")|2 < &llx — y|
Vx,y € RV

At small enough such that 0 < h := |ag| — |Bo|AL

2,

A BDF scheme is employed for time integration, then

71(72)" exp(73t”) e
Sx|| < r.(ox.;
oxg|l < sy v Lo [re(®xc; p)ll2

71(72)" exp(y3t") , j
oxT| < X min ro(y;
foxpl < 2OLEPRE) wax  min ryi )l

m OX( = x] — ®XG. m Ox] = x] — ®x]
Global error bounds grow exponentially in time and overpredict the error

Deterministic: not amenable to integration with UQ

Idea: construct accurate statistical error estimates from data

Reducing nonlinear dynamical systems Kevin Carlberg
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Observation: ROMs generate error indicators that inform the error

. - o 102
< 1| oo m | 6L T ® T]
Lo 10 Fos | |
°g r 1 2 4 ° °
33 |22 >
S —2| e residual norm |C I 4
P - . ’
g7 |l lerorbound | le 0T [yp-
1072 1071 -2 -1 0 1 2

dual-weighted residual

Goal: map error indicators (features) to the ROM error (response)

High-dimensional regression model (supervised ML)

m maps error indicators to a prediction of the error

® methods: random forest, support vector machine, k-NN

+ enables many candidate error indicators to be considered
Gaussian-process model

m maps regression-model output to a distribution over the error

+ removes regression-model bias

+ GP variance quantifies the ROM-induced epistemic uncertainty
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Approach: leverage simulation data

. . . ., Deval
.. ..._'.,:DROM
e * * + |Dromes
® . ® .
R
Offline: ot et st

ROM training
ROM construction

ROMES training: solve ROM and FOM for 1 € Dromes € Deval

m ROM error indicators
= ROM Qol error

ROMES construction

m Supervised ML: map ROM error indicators to ROM Qol error
Online: solve ROM + ROMES for remaining points in Deya

Collaborators: M. Drohmann, B. Freno (Sandia);
S. Trehan, L. Durlofsky (Stanford)
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ROMES formU|ati0n [Drohmann and C., 2015, Trehan et al., 2017]

m FOM produces sequence of Qol values

p = atom(p) = q(x"(p)ip), n=1.. N

m ROM: produces sequence of Qol and error-indicator values

B grom = q(®x"(pn);p), n=1..,N
pw—p"(n), n=1,..,N

ROMES training;:
Solve ROM and FOM for i € DromEs
Training data: {(p"(1). 9fom (1) — drRom(K)}neDromes
ROMES construction:
Apply supervised ML to predict response from features
m Features: error indicators p"(u)
m Response: error gfom(t) — GRom (1)
GP postprocessing to remove bias and quantify variance
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Example 1: GP only, stationary problem [prohmann and c., 2015]

—

Ty,

Ac(x; p)u(x; u) =0in Q x(n)=0o0nTp
Ve(p)x(p)-n=0on Ty, Ve(p)x(p)-n=1on Iy

m Inputs: g € [0.1,10]° define diffusivity c in subdomains
= ROM: RB-Greedy [Patera and Rozza, 2006]
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Error: energy norm of state-space error
Error indicator: residual norm

[P )
o Q. o O
S0 E 1 ®O6[ 8
g o F =5
= L
c Y [ B E4l |
S @ 2| | N3
S, 21077 ¢ = 0
[ [ © O 2| B
5 ES
= oun
Cﬁlofg i L S o0 . ; —
L n _o 1 c
10 10 ~ o ~
=] <]

residual norm ‘
deviation from GP mean

+ Unbiased, low-variance model of the error

+ Numerically validated

- Error bound overprediction as high as 8.0
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Error: error in temperature at a point
Error indicator: dual-weighted residual

y()TY Tr(®%; p) with YTS

Qol error

-2

(= =)
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1072

error reduction
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(®%; 1) Yy (p) =
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9wz
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+ Uncertainty control: lower variance as columns added to Y
+ Error can be reduced by up to two orders of magnitude

Reducing nonlinear dynamical systems
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Example 2: ML and GP, stationary problem [rreno and ¢, 2017]

A
Predictive Capability Assessment Project (PCAP)

m Mechanical response
m 2.8 x 10° degrees of freedom

m Inputs: p € [50 GPa, 100 GPa] x [0.2, 0.35] define tube
elastic modulus and Poisson ratio

m Qol: displacement of node of interest (orange)
m ROM: POD-Galerkin with |Drom| = 8

m ROMES: 150 data points (|Dromes| = 30 and five ROM
basis dimensions)

Reducing nonlinear dynamical systems Kevin Carlberg
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Error: error in y-displacement at a point
Error indicators: 5000 elements of residual, input parameters

0002 oo o)
0.000f 000
0.000f

~0.002] 0002
—0002)

o001 oo
~0001
~0.006] 0005
~0.005] ~0.006 —0.00s|

—o.010] 000 ~o0m0)

error in
y-displacement

TTT0010 0005 0006 0001 0002 0000 0.002 0004
k-nearest neighbors
error prediction

5! -0
0010 0005 0006 0001 —0002 0000 0002 0004 0010 0005 0006 0001 —0.002 0000 0002 0004

random forest support vector machine
error prediction error prediction

ML methods yield low-variance error predictions

+

4+ ML methods amenable to large number of error indicators

+ Gaussian process removes regression-model bias
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Example #3: ML and GP, nonlinear dynamical system

[Trehan et al., 2017]

Permeability field with injection /; and production P; wells

m Two-phase oil-water system in porous medium (Darcy's law)

m 5 x 103 degrees of freedom

m Inputs: time-varying bottom-hole pressure (BHP) at injector
wells

= Qol: oil/water production rates

= ROM: POD-TPWL with |Dgrom| = 3

= ROMES: |DROMES| =200

Reducing nonlinear dynamical systems Kevin Carlberg
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oil production
rate (barrels/day)

Error: phase flow rates at production well

Error indicators: 168 application-specific quantities

1000|

a
g
8

- wROM+ROMES
- linearization trajectory

-
>

water production
rate (barrels/day)

500 1000 1500

days

T - FOM
Y ---ROM
1000) b :; -~ ROM+ROMES
Q -+ linearization trajector)
500 :
500 1000 1500 2000
days
|
, * ROM
e - ROM+ROMES
.0 10
o+
tY =
3 =
o5 e
g8 &
28 3
L= q
go L
- edy
N b es s

20

relative error in
water production

3

* ROM
+ ROM+ROMES

50 100 . 150
test case index

50 100 150 200
test case index

+ ROMES correction significantly improves ROM prediction
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Summary: ROM and ROMES

Reduce the FOM dimensionality and
quantify the introduced uncertainty

Reduced-order model (ROM)

m Goal: low-dim dynamical system that accurately represents FOM
m Approach: unsupervised machine learning and projection
+ physics-based approximation
+ can preserve special problem structure
+ high speedups possible
Reduced-order model error surrogate (ROMES)
m Goal: unbiased, low-variance statistical model of the ROM error
m Approach: supervised machine learning (regression)
+ more useful than error bounds (not sharp)
+ quantifies ROM-induced epistemic uncertainty
+ enables rigorous integration with UQ
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Questions?

ROM references:

m C, Barone, and Antil. Galerkin v. least-squares Petrov—Galerkin projection in
nonlinear model reduction. Journal of Computational Physics, 330:693-734,
2017.

m C, Farhat, Cortial, and Amsallem. The GNAT method for nonlinear model
reduction: effective implementation and application to computational fluid
dynamics and turbulent flows. Journal of Computational Physics, 242:623-647,
2013.

m C, Farhat, and Bou-Mosleh. Efficient non-linear model reduction via a

least-squares Petrov—Galerkin projection and compressive tensor approximations.

International Journal for Numerical Methods in Engineering, 86(2):155-181,
April 2011.

ROMES references:
m Drohmann and C. The ROMES method for statistical modeling of

reduced-order-model error. SIAM/ASA Journal on Uncertainty Quantification,
3(1):116-145, 2015.

m Trehan, C, and Durlofsky. Error estimation for surrogate models of dynamical
systems using machine learning. Submitted to the International Journal for
Numerical Methods in Engineering, 2017.

m Freno and C, Applying machine learning to statistically model the error in
approximate solutions to parameterized nonlinear algebraic equations. In
preparation, 2017.
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